Fast PMI-Based Word Embedding with Efficient Use of Unobserved Patterns
نویسندگان
چکیده
منابع مشابه
FaDA: Fast Document Aligner using Word Embedding
FaDA1 is a free/open-source tool for aligning multilingual documents. It employs a novel crosslingual information retrieval (CLIR)-based document-alignment algorithm involving the distances between embedded word vectors in combination with the word overlap between the source-language and the target-language documents. In this approach, we initially construct a pseudo-query from a source-languag...
متن کاملEmbedding Senses for Efficient Graph-based Word Sense Disambiguation
We propose a simple graph-based method for word sense disambiguation (WSD) where sense and context embeddings are constructed by applying the Skip-gram method to random walks over the sense graph. We used this method to build a WSD system for Swedish using the SALDO lexicon, and evaluated it on six different annotated test sets. In all cases, our system was several orders of magnitude faster th...
متن کاملA Latent Variable Model Approach to PMI-based Word Embeddings
Semantic word embeddings represent the meaning of a word via a vector, and are created by diverse methods. Many use nonlinear operations on co-occurrence statistics, and have hand-tuned hyperparameters and reweighting methods. This paper proposes a new generative model, a dynamic version of the log-linear topic model of Mnih and Hinton (2007). The methodological novelty is to use the prior to c...
متن کاملNegPSpan: efficient extraction of negative sequential patterns with embedding constraints
Mining frequent sequential patterns consists in extracting recurrent behaviors, modeled as patterns, in a big sequence dataset. Such patterns inform about which events are frequently observed in sequences, i.e. what does really happen. Sometimes, knowing that some specific event does not happen is more informative than extracting a lot of observed events. Negative sequential patterns (NSP) form...
متن کاملEfficient learning for spoken language understanding tasks with word embedding based pre-training
Spoken language understanding (SLU) tasks such as goal estimation and intention identification from user’s commands are essential components in spoken dialog systems. In recent years, neural network approaches have shown great success in various SLU tasks. However, one major difficulty of SLU is that the annotation of collected data can be expensive. Often this results in insufficient data bein...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the AAAI Conference on Artificial Intelligence
سال: 2019
ISSN: 2374-3468,2159-5399
DOI: 10.1609/aaai.v33i01.33017031